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In the practical utilization of thermal shock in a rod with a load at the end in accordance with the method of
[1] as a means of studying the stability of the rod and the dynamic modulus of elasticity of elevated temper-
atures, it is necessary under certain conditions to take into account the effect of the variability of the mod-
ulus of elasticity on the thermoelastic forces. This is the subject of the present article.

Consider the behavior of an elastic rod of length I and mass m fixed at one end x = 0 and with a concentrated
mass M at the other end x = [ in the presence of rapid heating. Since the modulus of elasticity of the rod material de-
pends on the temperature, which, in turn, is a function of time, in what follows we assume that the modulus of elas-
ticity E =E(t) is a function of time.

The dynamic equilibrium equation for the mass M has the form:
Mu' - oF =0 1)

Here, u is the displacement of the end of the rod with the load M in the axial direction, ¢ is the longitudinal
stresses at that end, F is the cross-sectional area of the rod, and a dot denotes differentiation with respect to time t.

Neglecting thermoelastic interaction and using the stregs-strain relation
ct)=E @) [I"u(®) —a T (6] (2)

where « is the coefficient of linear expansion and T(t) the temperature rise at time t, we reduce the equilibrium equa-
tion to the form

Mu" + E 0)F17u = E (t)Fo T(f) (3)

Assume that the rod is uniformly heated over the length and cross section and that the temperature rise can be
expressed by the equation

TEH=Tt/t*0<t<t®), TH=T, > (4)

Here, T, is the maximum temperature rige and t* is the heating time. Since for many materials the temperature
dependence of the modulus of elasticity can be approximated over a wide interval by a linear function [2], using condi-
tion (4) we represent this dependence in the form

EM=FE (1 —Mt/t* 0t (h=1—E1l By

E (t) = Ey > (5)

Here, A =1 — E{/E; is a parameter and E; and E; are the moduli of elasticity at the starting temperature and
after it has risen by T,.

Substituting (4) and (5) into Eq. (3), we obtain
u” -+ oNu = oMl ¢/ t* (6)
1Y Ey 2
R I T

where p is the density of the rod material.

The solution of homogeneous equation (6) is given by the functions [3]
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Here, J;/3 (z) and Y, /3 (z) are Bessel functions of the first and second kinds.
For zero initial data the displacement and velocity u* of the end of the rod x =l are given by the expressions:

for 0 <t < t*
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In Egs. (9) the values of u (t*) and u* (t*) are calculated in accordance with (8) for t = t*
We find the thermoelastic stresses in the rod by means of Eq. (2):
for 0 =t < t*
i P 3 3
=3 T U Y, G — T, G ¥y, B (10)
for t > t*
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Eal, — 3A ¢ A [1 + 3 (1/2nBA T 1nBA T B9F)
Ty, (30%) \ 27
i/ i -
~v gy )] e+ a

Thus, the displacement of the end of therodx =1, its velocity,and the stresses in the rod for a variable modulus of
elasticity are completely determined by (8)—(11).

Consider the limiting case in which the time t¥* is much less than the fundamental period of the natural vibrations
of the loaded rod 27/w. In this case in Eq. (9) 8 — 0. Using representations of the Bessel functions in series form [4]
and confining ourselves to the first term of the expansion for small values of the argument, we have

u(t Gt
—H(Tl =1— cos i, Ela(12+ = ¢0S Of (12)
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It follows from expression (12) that in this case, as was to be expected, the natural frequency and the maximum
amplitude of the thermoelastic stresses are determined by the value of the modulus of elasticity after heating by T,.
In the figures we have usedthe notation U = uaT, and = = o/E;aT+.
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The effect of the parameter A and the heating time wt* on the displacement of the end of the rod and the stresses
in it when the vibrations are forced (during heating) and when they are free (after heating) can be seen from Figs. 1
and 2, where the u(t) and oft) relations are presented for wt* = 7 and various values of the parameter A. AsAincreases,
so does the period of the free vibrations; this is attributable to the decrease in the modulus of elasticity E during heat-
ing (see Eq. (1) of [1]). The amplitude of the compressive stresses is less during than after heating (Fig. 2). The ratio
of the maximum compressive stress in the first quarter period to the maximum compressive stress after heating o* /o™
is given in Fig. 3 for various heating times wt* and parameters A.
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The dependence of the maximum displacement ut and stress ¢ on the heating time wt* and the parameter A
is shown in Figs. 4 and 5. From these figures it is clear that at wt* < 1/ the maximum displacements depend only
slightly on the parameter A; the effect of A on the stresses is approximately proportional to the magnitude of A.
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An analysis of the data presented in Figs. 1 and 2 shows that at a heating time not exceeding a quarter period
the displacements and thermoelastic stresses can be calculated without serious error, as for the case of instantaneous
heating, from the period of the free vibrations and modulus of elasticity taken at the maximum heating temperature,

i.e., from relation (12).

REFERENCES

1. V. M. Kul'gavchuk and A, P. Mukhranov," PMTF [Journal of Applied Mechanics and Technical Physics],
no. 3, 1967.
2. W. Késter, "Die Temperaturabhangigkeit des Elastizitdtsmodul reiner Metalle," Z. Metallkunde, vol. 39,

no. 1, 1948.
3. E. Kamke, Differential Equations [Russian translation], Fizmatgiz, Moscow, 1961.

680



4. 1. M. Ryzhik and I. S. Gradshtein, Tables of Integrals, Sums, Series, and Products [in Russian], Gostekhizdat,
Moscow, 1951.

13 August 1968

Moscow

681



